ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
M. Nakamichi, J. H. Kim
Fusion Science and Technology | Volume 66 | Number 1 | July-August 2014 | Pages 157-162
Technical Paper | doi.org/10.13182/FST13-745
Articles are hosted by Taylor and Francis Online.
Advanced neutron multipliers with low swelling and high stability at high temperatures are desired for the pebble bed blankets of demonstration fusion power (DEMO) reactors. Beryllium intermetallic compounds (beryllides) such as Be12Ti are the most promising material for this purpose. To fabricate the beryllide pebbles, a new granulation process has been established that combines a plasma sintering method for beryllide synthesis and a rotating electrode method using a plasma-sintered electrode for granulation. In trial granulation examinations, prototypic beryllide pebbles 1 mm in diameter were successfully fabricated. This study describes the results of a crush test and the characterization of the oxidation properties of the prototypic beryllide pebbles compared with those of Be pebbles. The crush test revealed that the prototypic beryllide pebble was more brittle than a Be pebble, and its crush load is one-third that of a Be pebble. The oxidation experiment showed that the weight gain ratios of the prototypic beryllide pebbles were significantly smaller than those of pure Be pebbles. The results confirmed that the prototypic beryllide pebbles have better oxidation resistance than pure Be pebbles.