ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
M. Nakamichi, J. H. Kim
Fusion Science and Technology | Volume 66 | Number 1 | July-August 2014 | Pages 157-162
Technical Paper | doi.org/10.13182/FST13-745
Articles are hosted by Taylor and Francis Online.
Advanced neutron multipliers with low swelling and high stability at high temperatures are desired for the pebble bed blankets of demonstration fusion power (DEMO) reactors. Beryllium intermetallic compounds (beryllides) such as Be12Ti are the most promising material for this purpose. To fabricate the beryllide pebbles, a new granulation process has been established that combines a plasma sintering method for beryllide synthesis and a rotating electrode method using a plasma-sintered electrode for granulation. In trial granulation examinations, prototypic beryllide pebbles 1 mm in diameter were successfully fabricated. This study describes the results of a crush test and the characterization of the oxidation properties of the prototypic beryllide pebbles compared with those of Be pebbles. The crush test revealed that the prototypic beryllide pebble was more brittle than a Be pebble, and its crush load is one-third that of a Be pebble. The oxidation experiment showed that the weight gain ratios of the prototypic beryllide pebbles were significantly smaller than those of pure Be pebbles. The results confirmed that the prototypic beryllide pebbles have better oxidation resistance than pure Be pebbles.