ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Lorelei Commin, Siegfried Baumgärtner, Bernhard Dafferner, Silvia Heger, Michael Rieth, Anton Möslang
Fusion Science and Technology | Volume 66 | Number 1 | July-August 2014 | Pages 131-135
Technical Paper | doi.org/10.13182/FST13-744
Articles are hosted by Taylor and Francis Online.
In future nuclear fusion reactors, structural materials will undergo a large thermal cycling due to pulsed operation and the occurrence of several maintenance periods. Therefore, the investigation of the combined role of creep and fatigue loading is of major importance. In this study, we focused on Eurofer 3 electron beam welds. Two different post-welding heat treatments were carried out: a two-step heat treatment (30 minutes at 980°C followed by 2 hours at 750°C) and a one-step heat treatment (2 hours at 750°C). Fatigue, creep and creep-fatigue tests were performed. A 550°C test temperature was chosen, corresponding to the upper operation temperature currently foreseen for this material. Creep-fatigue experiments were achieved by interrupting a fatigue test and then applying a creep loading until the fracture of the specimen. Several fatigue pre-stress conditions were studied. The post-weld heat treatment influence was analyzed. The damage contributions of fatigue and creep were studied using electron microscopy. The results were compared to previous results obtained on base material.