ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
NRC OKs I&C upgrade for Limerick
The Nuclear Regulatory Commission has amended the operating licenses of the two boiling water reactors at Constellation Energy's Limerick nuclear power plant, giving the company the green light to replace the units' analog safety-related instrumentation and controls systems with a state-of-the-art digital system.
Xiaodan Yang, Huiqiu Deng, Nengwen Hu, Shifang Xiao, Cuilan Ren, Ping Huai, Chengbin Wang, Xiaofan Li, Wangyu Hu
Fusion Science and Technology | Volume 66 | Number 1 | July-August 2014 | Pages 112-117
Technical Paper | doi.org/10.13182/FST13-742
Articles are hosted by Taylor and Francis Online.
Tungsten (W) is a promising candidate as for the plasma-facing material in future nuclear fusion reactors. The interstitial helium (He) atoms in bulk tungsten will degrade seriously the mechanical properties of tungsten. In the present paper the effect of interstitial He atoms on the production and evolution of defects in irradiated tungsten has been investigated using molecular dynamics (MD) simulations. Under the conditions of different primary-knocked atom (PKA) energies and irradiation temperatures, it is found that the interstitial He atoms increase the generation of Frenkel pairs, and this tendency can be greatly promoted by increasing the PKA energy and irradiation temperature. The interstitial He atoms can also increase the displacement cascade efficiency and impact greatly on the structure of radiation-induced defects in tungsten.