ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
NRC cancels advanced reactor meeting due to government shutdown
The Nuclear Regulatory Commission has announced it is cancelling an upcoming advanced reactor stakeholder meeting, originally scheduled for November 19, due to the government shutdown and the limitations on staffing at the agency.
Xiaodan Yang, Huiqiu Deng, Nengwen Hu, Shifang Xiao, Cuilan Ren, Ping Huai, Chengbin Wang, Xiaofan Li, Wangyu Hu
Fusion Science and Technology | Volume 66 | Number 1 | July-August 2014 | Pages 112-117
Technical Paper | doi.org/10.13182/FST13-742
Articles are hosted by Taylor and Francis Online.
Tungsten (W) is a promising candidate as for the plasma-facing material in future nuclear fusion reactors. The interstitial helium (He) atoms in bulk tungsten will degrade seriously the mechanical properties of tungsten. In the present paper the effect of interstitial He atoms on the production and evolution of defects in irradiated tungsten has been investigated using molecular dynamics (MD) simulations. Under the conditions of different primary-knocked atom (PKA) energies and irradiation temperatures, it is found that the interstitial He atoms increase the generation of Frenkel pairs, and this tendency can be greatly promoted by increasing the PKA energy and irradiation temperature. The interstitial He atoms can also increase the displacement cascade efficiency and impact greatly on the structure of radiation-induced defects in tungsten.