ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
Yu. Igitkhanov, R. Fetzer, B. Bazylev, L. Boccaccini
Fusion Science and Technology | Volume 66 | Number 1 | July-August 2014 | Pages 100-105
Technical Paper | doi.org/10.13182/FST13-732
Articles are hosted by Taylor and Francis Online.
The thermal performance of different modules of plasma-facing components (PFCs) is analyzed for the DEMO reactor conditions in steady-state operation with the inclusion of the transient edge-localized modes (ELMs) for mitigated and unmitigated cases. As an example, the effect of these loads is considered for the tungsten (W) alloy mono-block design with a Cu OFHC/EUROFER water coolant tube first proposed in the framework of the Power Plant Physics and Technology (PPP&T) divertor study. A variant of this design with a EUROFER tube connected to the W block with a diamond/copper composite (DCC) used in the diagnostic windows is also analyzed. A design goal is to find the optimal thicknesses of material layers that allow one to keep the maximum temperatures within the allowable design limits under ITER water cooling conditions. Heat transfer and armor erosion due to the plasma impact has been modeled by using the MEMOS code.