ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
Mikhail Tikhonchev, Artem Muralev, Vyacheslav Svetukhin
Fusion Science and Technology | Volume 66 | Number 1 | July-August 2014 | Pages 91-99
Technical Paper | doi.org/10.13182/FST13-721
Articles are hosted by Taylor and Francis Online.
The present paper is devoted to radiation damage simulation of Fe-9at.%Cr binary alloy with twin grain boundaries (GBs) by the molecular dynamics method. Evaluations of specific energy of five GBs and sizes of corresponding GB regions have been obtained for iron and FeCr alloy at temperatures of 0 and 300 K. The binding energies of the vacancy, self-interstitial atom (SIA) and substitutional Cr atom to the GB in pure Fe have been estimated. The results showed that GB regions are energetically preferable for the point defects. Interaction of 10 keV displacement cascades with the GBs has been studied. The tendency to accumulate at the GB region has been shown for produced defects. Some quantitative results which describe features of radiation damage nearby the GB have been obtained. It is revealed that Cr fraction in SIAs inside the GB region is slightly lower than that in the initial alloy matrix. Cr fraction in interstitial configurations outside the GB region is almost three times as high. However, no remarkable chromium redistribution nearby the GB has been detected.