ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
Mikhail Tikhonchev, Artem Muralev, Vyacheslav Svetukhin
Fusion Science and Technology | Volume 66 | Number 1 | July-August 2014 | Pages 91-99
Technical Paper | doi.org/10.13182/FST13-721
Articles are hosted by Taylor and Francis Online.
The present paper is devoted to radiation damage simulation of Fe-9at.%Cr binary alloy with twin grain boundaries (GBs) by the molecular dynamics method. Evaluations of specific energy of five GBs and sizes of corresponding GB regions have been obtained for iron and FeCr alloy at temperatures of 0 and 300 K. The binding energies of the vacancy, self-interstitial atom (SIA) and substitutional Cr atom to the GB in pure Fe have been estimated. The results showed that GB regions are energetically preferable for the point defects. Interaction of 10 keV displacement cascades with the GBs has been studied. The tendency to accumulate at the GB region has been shown for produced defects. Some quantitative results which describe features of radiation damage nearby the GB have been obtained. It is revealed that Cr fraction in SIAs inside the GB region is slightly lower than that in the initial alloy matrix. Cr fraction in interstitial configurations outside the GB region is almost three times as high. However, no remarkable chromium redistribution nearby the GB has been detected.