ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
IAEA program uses radioisotopes to protect rhinos
After two years of testing, the International Atomic Energy Agency and the University of the Witwatersrand in Johannesburg, South Africa, have begun officially implementing the Rhisotope Project, an innovative effort to combat rhino poaching and trafficking by leveraging nuclear technology.
Keith J. Leonard, Tolga Aytug, Albert A. Gapud, Fredrick A. List III, Nathan T. Greenwood, Yanwen Zhang, Alejandro G. Perez-Bergquist, William J. Weber
Fusion Science and Technology | Volume 66 | Number 1 | July-August 2014 | Pages 57-62
Technical Paper | doi.org/10.13182/FST13-735
Articles are hosted by Taylor and Francis Online.
The latest generations of rare-earth substituted and nano-doped YBa2Cu3O7-x (YBCO) high temperature superconductors (HTS) developed for applications in magnetic fields are being evaluated for potential use in fusion energy applications. The benefits include increased plasma performance and reduced system cost through more compact and cryoplant-free fusion energy systems. The response to ion irradiation of commercially produced GdBa2Cu3O7-x, (Y,Dy)Ba2Cu3O7-x, and Zr-doped (Y,Gd)Ba2Cu3O7-x samples was investigated. These state-of-the-art conductors represent different design methods for enhanced flux pinning, resulting in different responses to radiation damage. Irradiations using 5-MeV Ni and 25-MeV Au ions were used to examine cascade damage while keeping electronic energy loss levels below columnar defect thresholds. An improved radiation tolerance is found in these new generation HTS conductors. Specifically, the influences of irradiation on the superconducting critical temperatures and the electrical transport properties of the samples were much less than that observed on the earlier generation of irradiated HTS materials investigated by others.