ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
Pavel Vladimirov, Dmitry Bachurin, Vladimir Borodin, Vladimir Chakin, Maria Ganchenkova, Alexander Fedorov, Michael Klimenkov, Igor Kupriyanov, Anton Moeslang, Masaru Nakamichi, Tamaki Shibayama, Sander Van Til, Milan Zmitko
Fusion Science and Technology | Volume 66 | Number 1 | July-August 2014 | Pages 28-37
Technical Paper | doi.org/10.13182/FST13-776
Articles are hosted by Taylor and Francis Online.
Beryllium is a promising functional material for several breeder system concepts to be tested within the experimental fusion reactor ITER and, later, implemented in the first commercial demonstration fusion power plant DEMO. For these applications its resistance to neutron irradiation and the detrimental effects of radiogenic gases (helium and tritium) is crucial for fusion reactor safety, subsequent waste management and material recycling. A reliable prediction of beryllium behavior under fusion irradiation conditions requires both dedicated experiments and advanced modeling. Characterization of the reference and alternative beryllium pebble grades was performed in terms of their microstructure and tritium release properties. The results are discussed with respect to their application in fusion blanket systems. The outcomes from the HIDOBE-01 post irradiation experiment (PIE) are discussed to highlight several interesting features manifested by beryllium irradiation at fusion relevant temperatures. Titanium beryllide is presently developed as a possible substitute for beryllium pebbles as it shows better oxidation resistance, higher melting temperature and tritium release efficiency. Pebbles consisting predominantly of Be12Ti phase were successfully fabricated at Rokkasho, Japan. Recent advances in modeling provide new insights on the production of point defects and the behavior of helium and hydrogen impurities in beryllium, improving understanding of the mechanisms of primary damage production, hydrogen's effect on the size and the shape of gas bubbles, and tritium removal from the pebbles. The relevance of the experimental and modeling results on irradiated beryllium for the design of a fusion demonstration reactor is evaluated, and recommendations for future R&D programs are proposed.