ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
Yuriy Divin and Hitesh Kumar B. Pandya
Fusion Science and Technology | Volume 65 | Number 3 | May 2014 | Pages 399-405
Technical Paper | doi.org/10.13182/FST13-713
Articles are hosted by Taylor and Francis Online.
Electron cyclotron emission (ECE) from hot tokamak plasmas is recognized nowadays as a very informative diagnostic of main plasma parameters. Among several instruments developed to measure ECE, only a Martin-Puplett interferometer operates in a broadband frequency range of ECE from 70 to 1000 GHz. To derive the absolute radiation temperature of the plasma, a total measurement system, including front-end radiation collection, a transmission line, and the interferometer, is calibrated using a hot/cold calibration source. It takes a long time to calibrate the ECE system because of the high values of the noise equivalent power (NEP). A new technique, Hilbert-transform spectral analysis, is proposed for ITER plasma ECE spectral measurements. The operation principle, characteristics, and advantages of the corresponding Hilbert-transform spectrum analyzer (HTSA) based on a high-Tc Josephson detector are described. Because of the lower NEP values of the Josephson detector, this spectrum analyzer might demonstrate shorter calibration times than those for the Martin-Puplett interferometer. Because of a principal difference between Fourier and Hilbert transforms, the HTSA might have an additional advantage in retrieving harmonic ECE radiation from a continuous thermal background.