ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
TVA and Entra1 to deploy 6 GW of NuScale SMRs
The Tennessee Valley Authority and Houston, Texas–based energy production company Entra1 Energy recently announced the signing of an agreement to collaborate on the deployment of six new nuclear power plants equipped with NuScale small modular reactors.
Y. P. Zhang, D. Mazon, Yi Liu, G. L. Yuan, H. B. Xu, B. Lu, X. Y. Song, and Q. W. Yang
Fusion Science and Technology | Volume 65 | Number 3 | May 2014 | Pages 366-371
Technical Paper | doi.org/10.13182/FST13-695
Articles are hosted by Taylor and Francis Online.
A new hard X-ray (HXR) camera system has been planned to be developed for HL-2A tokamak (R0 = 1.65 m, a = 0.4 m, Bt = 2.8 T, and Ip = 0.5 MA), which is dedicated to the tomography of fast electron bremsstrahlung emission in the energy range 10 to 200 keV. The camera system includes two independent HXR cameras, which are both located in the same poloidal plane. Each camera is made up of 30 detection chords and views the whole poloidal cross section of the plasma. The spatial and temporal resolutions of the camera are 2 to 3 cm and 1 to 2 ms, respectively. HXR detection is performed using cadmium telluride (CdTe) semiconductors. Both simulation and experimental results suggest that an Al foil with a 0.3-mm thickness is the best candidate for filtering the low-energy X-ray photons. Powerful inversion techniques are employed to obtain the local HXR profiles as functions of time and photon energy. The HXR camera system planned for HL-2A tokamak is presented in detail.