ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Nuria Moral, José Manuel Perlado, and Jesús Álvarez
Fusion Science and Technology | Volume 65 | Number 3 | May 2014 | Pages 355-365
Technical Paper | doi.org/10.13182/FST13-686
Articles are hosted by Taylor and Francis Online.
The study of the retention and desorption of hydrogen isotopes and helium atoms in first-wall materials is key for the design of future fusion reactors, not only for the effect of the materials on the degradation of the wall properties but also for the implications in tritium management strategies. A diffusion model of the implanted H, D, T, and He species in a 1-mm-thick first wall of tungsten for the two initial phases of the proposed European laser fusion project HiPER (namely, phases 4a and 4b) has been implemented using the tritium migration analysis program TMAP7. The effects of the abrupt temperature increases, working temperatures, and the operational pulsing modes on the diffusion are studied. Although a detailed treatment of the different trapping mechanisms has been omitted, meaningful quantitative results on the accumulation, desorption, and time intervals to reach a stationary state are presented and discussed.