ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Paritosh Chaudhuri
Fusion Science and Technology | Volume 65 | Number 2 | March-April 2014 | Pages 292-298
Technical Paper | doi.org/10.13182/FST13-676
Articles are hosted by Taylor and Francis Online.
Lithium metatitanate (Li2TiO3) is one of the candidate tritium-breeder materials for the ITER test blanket module (TBM) and the DEMO blanket. It will be used as the tritium-breeder material for the Indian lead-lithium–cooled ceramic breeder concept of the TBM to be tested in ITER. Thermal conductivity is one of the most important parameters in the design of TBMs using ceramic materials. The design of breeder blankets is strongly affected by the low values of the thermal conductivity and density of ceramic breeder pebble beds. A significant increase in both quantities would enhance thermal performance and lead to an increased tritium-breeding ratio. Thermal transport properties of Li2TiO3 were measured using the laser flash method, which determines the thermal diffusivity from the transient temperature rise measured at one side of a pellet with laser pulse heating at the other side. The thermal conductivity of Li2TiO3 pellets was then estimated from the experimentally obtained thermal diffusivity values. Finite element analysis using ANSYS software was performed to simulate the transient thermal measurements, and the results were compared with those obtained by the laser flash method. The experimental and simulation results were found to be in good agreement. The experimental details and ANSYS simulation are presented in this paper.