ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
M. Ghate, A. Kumar, P. Charkhawala, N. Chauhan, S. Pradhan
Fusion Science and Technology | Volume 65 | Number 2 | March-April 2014 | Pages 255-261
Technical Paper | doi.org/10.13182/FST13-652
Articles are hosted by Taylor and Francis Online.
The effects of various fabrication processes, such as compaction and swaging, during the fabrication of a cable-in-conduit conductor on the mechanical and metallurgical properties of jacket material (SS316LN) are discussed in this paper. Microstructure analysis of various samples is carried out, and the change in microstructures has been studied using scanning electron microscopy image analysis. The variation in hardness for the jacket material is also tested after swaging and compaction operations. The jacket samples are tested for their tensile strength, reduction in area, elongation, and impact strength as per applicable American Society for Testing and Materials standards. The ultimate tensile strength (UTS) is observed to be decreased for a sample compacted to 733 MPa when compared to virgin samples. On the contrary, the UTS increased significantly up to 1027 MPa in swaged samples. There is no linear relationship between tensile strength of SS316LN after cold working operations. The effect of thermal shock on the mechanical and metallurgical properties of the jacket material is also investigated.