ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
B. A. Kalin, A. N. Suchkov, V. T. Fedotov, O. N. Sevryukov, P. V. Morokhov, V. M. Ananiyn, A. A. Ivannikov, A. A. Polyansky, I. V. Mazul, A. N. Makhankov, A. A. Gervash
Fusion Science and Technology | Volume 65 | Number 2 | March-April 2014 | Pages 212-221
Technical Paper | doi.org/10.13182/FST13-667
Articles are hosted by Taylor and Francis Online.
As applied to the manufacture of the ITER first wall, a rapidly quenched copper-based filler metal for brazing chromium-zirconium copper alloy (CuCrZr) with beryllium (Be) at temperatures below 720°C has been selected. The composition of the given filler metal has been optimized by varying the concentration of alloying elements, such as Sn, Ni, and P, improving the filler functional properties and quality. Rapidly quenched ribbon-type filler metals with various contents of alloying elements were investigated by differential thermal and X-ray phase analysis, atomic force microscopy, and scanning electron microscopy. To improve the casting performance of the filler metal and obtain high-quality ribbons, the kinematic viscosity of brazing alloys with various contents of Ni, Sn, and P has been investigated. The chromium-zirconium copper alloy has been brazed with Be using the filler metals obtained (by furnace brazing and fast brazing by passing an electric current). Based on the results of complex research, an ultrafast (quenching rate of ∼105°C/s) quenched brazing alloy STEMET 1101M (Cu-9.1Ni-3.6Sn-8.0P, in weight percent) has been selected and manufactured in the form of a ribbon that is 50 mm in width and 50 μm in thickness. An experimental mock-up of the ITER first wall has been made in D.V. Efremov SRIEA by rapid brazing (by passing a current) using the filler metal STEMET 1101M. The brazed joint has withstood 15 000 cycles of thermocycling under a thermal load of 0.5 to 5.9 MW/m2 without breaking.