ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
B. A. Kalin, A. N. Suchkov, V. T. Fedotov, O. N. Sevryukov, P. V. Morokhov, V. M. Ananiyn, A. A. Ivannikov, A. A. Polyansky, I. V. Mazul, A. N. Makhankov, A. A. Gervash
Fusion Science and Technology | Volume 65 | Number 2 | March-April 2014 | Pages 212-221
Technical Paper | doi.org/10.13182/FST13-667
Articles are hosted by Taylor and Francis Online.
As applied to the manufacture of the ITER first wall, a rapidly quenched copper-based filler metal for brazing chromium-zirconium copper alloy (CuCrZr) with beryllium (Be) at temperatures below 720°C has been selected. The composition of the given filler metal has been optimized by varying the concentration of alloying elements, such as Sn, Ni, and P, improving the filler functional properties and quality. Rapidly quenched ribbon-type filler metals with various contents of alloying elements were investigated by differential thermal and X-ray phase analysis, atomic force microscopy, and scanning electron microscopy. To improve the casting performance of the filler metal and obtain high-quality ribbons, the kinematic viscosity of brazing alloys with various contents of Ni, Sn, and P has been investigated. The chromium-zirconium copper alloy has been brazed with Be using the filler metals obtained (by furnace brazing and fast brazing by passing an electric current). Based on the results of complex research, an ultrafast (quenching rate of ∼105°C/s) quenched brazing alloy STEMET 1101M (Cu-9.1Ni-3.6Sn-8.0P, in weight percent) has been selected and manufactured in the form of a ribbon that is 50 mm in width and 50 μm in thickness. An experimental mock-up of the ITER first wall has been made in D.V. Efremov SRIEA by rapid brazing (by passing a current) using the filler metal STEMET 1101M. The brazed joint has withstood 15 000 cycles of thermocycling under a thermal load of 0.5 to 5.9 MW/m2 without breaking.