ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
P. K. Sharma
Fusion Science and Technology | Volume 65 | Number 1 | January 2014 | Pages 103-119
Lecture | doi.org/10.13182/FST13-639
Articles are hosted by Taylor and Francis Online.
The lower hybrid current drive (LHCD) system, which is a mature, robust, and reliable heating and current drive system in a large number of tokamaks, is designed, developed, and being commissioned on the steady-state superconducting tokamak (SST-1) for driving 220 kA of plasma current, noninductively, for 1000 s, at nominal plasma parameters (plasma density ∼2×1019 m−3, temperature ∼1 keV, toroidal magnetic field ∼3 T), using four 3.7-GHz, 500-kW continuous wave (cw) klystrons. It employs a conventional grill antenna to launch toroidal lower hybrid waves asymmetrically, with a parallel refractive index N∥ of approximately 2.25 at 90-deg relative phasing of adjacent channels. The system is very complex and requires interfacing with several subsystems such as high-power radio-frequency systems, high-voltage power supply systems, auxiliary power supply systems, efficient thermal management systems, complex networks of transmission line systems, and robust and reliable data acquisition and control systems. With the SST-1 LHCD system as a case study, this lecture gives a broad overview of the physics and design layout of LHCD systems. It addresses cutting-edge technologies employed in realizing the system and gives the present status and advances made for cw operation. The challenges and opportunities are also highlighted.