ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Oklo signs MOU to partner with Korea Hydro & Nuclear Power
Oklo cofounder and CEO Jacob DeWitte and KHNP CEO Joo-ho Whang following the virtual signing of an MOU. (Source: Oklo)
Oklo announced last week that it hopes to expand development and global deployment of its advanced nuclear technology through a new partnership with Korea Hydro & Nuclear Power.
The memorandum of understanding includes plans for the companies to advance standard design development and global deployment of Oklo’s planned Aurora Powerhouse, a microreactor that would generate 15 MW and be scalable to 50 MWe. Oklo said each unit can operate for 10 years or longer before refueling.
Oklo and KHNP plan to cooperate on early-stage project development, including manufacturability assessments and planning of major equipment, supply chain development for balance-of-plant systems, and constructability assessments and planning.
D. T. Goodin, N. B. Alexander, G. E. Besenbruch, L. C. Brown, A. Nobile, R. W. Petzoldt, W. S. Rickman, D. Schroen, B. Vermillion
Fusion Science and Technology | Volume 44 | Number 2 | September 2003 | Pages 279-283
Technical Paper | Fusion Energy - Advanced Designs | doi.org/10.13182/FST03-A347
Articles are hosted by Taylor and Francis Online.
The "Target Fabrication Facility" (TFF) of an IFE power plant must supply about 500,000 targets per day. The targets are injected into the target chamber at a rate of 5-10 Hz and tracked precisely so the driver beams can be directed to the target. The feasibility of developing successful fabrication and injection methodologies at the low cost required for energy production (about $0.25/target, about 104 less than current costs) is a critical issue for inertial fusion. To help identify major cost factors and technology development needs, we have utilized a classic chemical engineering approach to the TFF. The analyses assume an "nth-of-a-kind" TFF and utilize standard industrial engineering cost factors. The results indicate that the direct drive target can be produced for about $0.16 each. Iterations are still underway for the indirect drive target. These cost analyses assume that the process development is accomplished to allow scaling of current laboratory methods to larger sizes, while still meeting target specifications. A development program is underway at various laboratories to support this scale-up.