ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
M. Nieto, D. N. Ruzic, J. P. Allain
Fusion Science and Technology | Volume 44 | Number 1 | July 2003 | Pages 232-236
Technical Paper | Fusion Energy - Divertor and Plasma-Facing Components | doi.org/10.13182/FST03-A339
Articles are hosted by Taylor and Francis Online.
The Flowing Liquid Surface Retention Experiment (FLIRE) has been built and designed at the University of Illinois at Urbana-Champaign to provide fundamental experimental data on the retention and pumping of He, H and other species in flowing liquid surfaces. These measurements are critical to the development of advanced plasma-facing components (PFCs) that apply flowing liquid metals to mitigate high heat loads encountered in the divertor region of next-step fusion reactors. The FLIRE facility currently uses an ion beam source, which injects ions into a flowing stream of liquid lithium. Its design allows the liquid lithium to flow between two vacuum chambers that become isolated from each other when the lithium flows. Recent results show retention of helium in flowing liquid lithium at 250-300 °C to be of the order 10-4 and diffusivities of 10-4 to 10-3 cm2/sec.