ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Oklo signs MOU to partner with Korea Hydro & Nuclear Power
Oklo cofounder and CEO Jacob DeWitte and KHNP CEO Joo-ho Whang following the virtual signing of an MOU. (Source: Oklo)
Oklo announced last week that it hopes to expand development and global deployment of its advanced nuclear technology through a new partnership with Korea Hydro & Nuclear Power.
The memorandum of understanding includes plans for the companies to advance standard design development and global deployment of Oklo’s planned Aurora Powerhouse, a microreactor that would generate 15 MW and be scalable to 50 MWe. Oklo said each unit can operate for 10 years or longer before refueling.
Oklo and KHNP plan to cooperate on early-stage project development, including manufacturability assessments and planning of major equipment, supply chain development for balance-of-plant systems, and constructability assessments and planning.
M. Nieto, D. N. Ruzic, J. P. Allain
Fusion Science and Technology | Volume 44 | Number 1 | July 2003 | Pages 232-236
Technical Paper | Fusion Energy - Divertor and Plasma-Facing Components | doi.org/10.13182/FST03-A339
Articles are hosted by Taylor and Francis Online.
The Flowing Liquid Surface Retention Experiment (FLIRE) has been built and designed at the University of Illinois at Urbana-Champaign to provide fundamental experimental data on the retention and pumping of He, H and other species in flowing liquid surfaces. These measurements are critical to the development of advanced plasma-facing components (PFCs) that apply flowing liquid metals to mitigate high heat loads encountered in the divertor region of next-step fusion reactors. The FLIRE facility currently uses an ion beam source, which injects ions into a flowing stream of liquid lithium. Its design allows the liquid lithium to flow between two vacuum chambers that become isolated from each other when the lithium flows. Recent results show retention of helium in flowing liquid lithium at 250-300 °C to be of the order 10-4 and diffusivities of 10-4 to 10-3 cm2/sec.