ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
Tatsuya Hinoki, Edgar Lara-Curzio, Lance L. Snead
Fusion Science and Technology | Volume 44 | Number 1 | July 2003 | Pages 211-218
Technical Paper | Fusion Energy - Fusion Materials | doi.org/10.13182/FST03-A336
Articles are hosted by Taylor and Francis Online.
Mechanical properties of silicon carbide composites reinforced with highly crystalline fibers and fabricated by the chemical vapor infiltration method were evaluated. Materials used were SiC/SiC composites reinforced with unidirectional Hi-Nicalon Type-S fibers and unidirectional Tyranno SA fibers with various fiber/matrix interphase. Also, SiC/SiC composites reinforced with plain weave Tyranno SA fibers with carbon or multilayers of silicon carbide and carbon interphase were evaluated. In-plane tensile, transthickness tensile and interlaminar shear properties were evaluated by the in-plane tensile test, the transthickness tensile test, the diametral compression test and the compression test of double-notched specimens.The elastic modulus and proportional limit stress were improved by using high purity silicon carbide fibers. The in-plane tensile properties were insensitive to carbon interphase thickness for a range of thicknesses between 30 and 230 nm. It was found that the in-plane tensile strength of composites containing multilayers of silicon carbide and carbon coating of fibers and fiber bundles was superior to that of composites with carbon alone. Transthickness tensile strength and shear strength of high purity silicon carbide composites were successfully evaluated.