ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Meimei Li, James F. Stubbins
Fusion Science and Technology | Volume 44 | Number 1 | July 2003 | Pages 186-190
Technical Paper | Fusion Energy - Fusion Materials | doi.org/10.13182/FST03-A331
Articles are hosted by Taylor and Francis Online.
The influence of radiation damage on the fatigue performance of two selected copper alloys, a dispersion-strengthened CuAl-25 alloy and a precipitation-hardened CuCrZr alloy, was analyzed. The fatigue lives of the two alloys were predicted using their tensile properties before and after irradiation by the Universal Slopes method. The predicted lives are compared with experimental results, and the feasibility of using tensile properties to predict fatigue lives following irradiation is examined. The fatigue performance of these two copper alloys was degraded due to radiation exposure, but the radiation effect on the fatigue performance was not as severe as on the tensile properties. The life prediction agrees reasonably well with the measured fatigue response.