ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Sosuke Kondo, Keyong Hwan Park, Yutai Katoh, Akira Kohyama
Fusion Science and Technology | Volume 44 | Number 1 | July 2003 | Pages 181-185
Technical Paper | Fusion Energy - Fusion Materials | doi.org/10.13182/FST03-A330
Articles are hosted by Taylor and Francis Online.
High temperature and high dose irradiation effects on microstructural evolution in high purity -SiC was studied by Single- and dual-ion irradiation, where 5.1 MeV Si2+ ions for displacement damage and 1 MeV He+ ions for (n, ) simulation were implanted at 1673 K. From a cross-sectional transmission electron microscopy (XTEM) study of the -SiC irradiated with single-ion up to a dose of 100 dpa, high density dislocation loops were observed. Sizes and concentrations of the loops are dependant on displacement damage level. In the dual-ion irradiated specimen, dislocation network was observed through the dual-ion irradiated region. At the same time, cavities were formed in both the grain and grain boundary. In front of the irradiated surface, localized growth of the cavities was observed. TEM micrographs demonstrate that the helium had a large mobility on grain boundary and dislocation network under high temperature irradiation. It is clarified that helium largely contributes to the development of irradiation-induced microstructural defects. The formation mechanisms of microstructural defects were also discussed.