ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Nuclear News 40 Under 40: The wait is over
Following the enthusiastic response from the nuclear community in 2024 for the inaugural NN 40 Under 40, the Nuclear News team knew we had to take up the difficult task in 2025 of turning it into an annual event—though there was plenty of uncertainty as to how the community would receive a second iteration this year. That uncertainty was unfounded, clearly, as the tight-knit nuclear community embraced the chance to celebrate its up-and-coming generation of scientists, engineers, and policy makers who are working to grow the influence of this oft-misunderstood technology.
Sosuke Kondo, Keyong Hwan Park, Yutai Katoh, Akira Kohyama
Fusion Science and Technology | Volume 44 | Number 1 | July 2003 | Pages 181-185
Technical Paper | Fusion Energy - Fusion Materials | doi.org/10.13182/FST03-A330
Articles are hosted by Taylor and Francis Online.
High temperature and high dose irradiation effects on microstructural evolution in high purity -SiC was studied by Single- and dual-ion irradiation, where 5.1 MeV Si2+ ions for displacement damage and 1 MeV He+ ions for (n, ) simulation were implanted at 1673 K. From a cross-sectional transmission electron microscopy (XTEM) study of the -SiC irradiated with single-ion up to a dose of 100 dpa, high density dislocation loops were observed. Sizes and concentrations of the loops are dependant on displacement damage level. In the dual-ion irradiated specimen, dislocation network was observed through the dual-ion irradiated region. At the same time, cavities were formed in both the grain and grain boundary. In front of the irradiated surface, localized growth of the cavities was observed. TEM micrographs demonstrate that the helium had a large mobility on grain boundary and dislocation network under high temperature irradiation. It is clarified that helium largely contributes to the development of irradiation-induced microstructural defects. The formation mechanisms of microstructural defects were also discussed.