ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
D. R. Williamson, R. R. Peterson, J. P. Blanchard
Fusion Science and Technology | Volume 44 | Number 1 | July 2003 | Pages 169-174
Technical Paper | Fusion Energy - Fusion Materials | doi.org/10.13182/FST03-A328
Articles are hosted by Taylor and Francis Online.
The capability of using the Z-Machine at Sandia to perform isentropic compression experiments has been discussed by Hall previously. Pressures exceeding 1.5 Mbar have been launched into materials and the pressure wave can be shaped by varying the load current in Z. In this paper, theoretical results will be presented for an aluminum sample in which we obtain isentropic equations of state (EOS) information.Obtaining the isentropic EOS is necessary in many scientific and technological fields for computer simulations. We will follow the procedure outlined by Reisman to determine the EOS. From these steps, we will determine the theoretical EOS of aluminum using data obtained from BUCKY. We will discuss any variances we have in our results due to the use of two different sets of EOS opacity data.The results presented here were obtained using BUCKY, a 1-D MHD code developed at the University of Wisconsin-Madison. BUCKY is a code that simulates highenergy density plasmas and target yields for Inertial Confinement Fusion (ICF). BUCKY was originally designed to study target physics and target chamber designs for ICF reactors but can be used to study Isentropic Compression Experiments.We will describe the procedure used to determine the velocity wave profile measurements that leads to determining EOS. From the velocity wave profile we will be able to determine the isentropic compression equations of state of the aluminum sample modeled.