ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Oklo signs MOU to partner with Korea Hydro & Nuclear Power
Oklo cofounder and CEO Jacob DeWitte and KHNP CEO Joo-ho Whang following the virtual signing of an MOU. (Source: Oklo)
Oklo announced last week that it hopes to expand development and global deployment of its advanced nuclear technology through a new partnership with Korea Hydro & Nuclear Power.
The memorandum of understanding includes plans for the companies to advance standard design development and global deployment of Oklo’s planned Aurora Powerhouse, a microreactor that would generate 15 MW and be scalable to 50 MWe. Oklo said each unit can operate for 10 years or longer before refueling.
Oklo and KHNP plan to cooperate on early-stage project development, including manufacturability assessments and planning of major equipment, supply chain development for balance-of-plant systems, and constructability assessments and planning.
Neil B. Morley, Jonathan Burris
Fusion Science and Technology | Volume 44 | Number 1 | July 2003 | Pages 74-78
Technical Paper | Fusion Energy - MFE Chamber Technology | doi.org/10.13182/FST03-A313
Articles are hosted by Taylor and Francis Online.
Fairly recently, a new experimental free surface liquid metal MHD facility, the so-called MTOR facility, has come on-line, and new data has been taken concerning flows of gallium alloy across a moderately strong toroidal field with characteristic 1/R field gradient. The purpose of these experiments has been two-fold: to gather data for benchmarking currently existing one and two dimensional free surface computational flow models (as well as 3D models currently under development), and to investigate phenomena not predicted by models, especially effects of nozzles, drains, waves and turbulence. Data is presented concerning MHD effects on the mean flow height and wave structure, both with and without the so-called Zakharov magnetic propulsion current added to help control and stabilize the flow. The test section is wide enough so that the characteristic factor (Hartmann Number * Aspect Ratio) is less than unity. In this case the Hartmann layer drag effects are small, allowing comparison of experimental data to two-dimensional axisymmetric models. Preliminary conclusions suggest that the field gradient in these experiments does not adversely affect the stability of the surface, and that magnetic propulsion current is effective in flattening and accelerating the liquid metal flow.