ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Rajendra Prashad Anand, Tejen Kumar Basu, Damaraju V. S. Ramakrishna
Fusion Science and Technology | Volume 31 | Number 3 | May 1997 | Pages 370-377
Technical Paper | Blanket Engineering | doi.org/10.13182/FST97-A30839
Articles are hosted by Taylor and Francis Online.
Uranium-233 breeding studies are carried out in a compact thorium-oxide cylindrical blanket assembly surrounded by a thick polypropylene reflector in a fusion neutron environment. The assembly consists of 11 rings of thorium-oxide rods stacked in a hexagonal geometry with a central through channel for the 14-MeV (d, t) neutron source. A total of 120 thorium-oxide probes are inserted inside the rods in different axial and radial locations in the assembly, which is then subjected to 14-MeV neutron irradiation for 25 h. Protactinium-233 gamma activity produced in the probes because of neutron captures in the thorium is measured using a high-efficiency, high-purity germanium detector. The measured 233U production rates are fitted to obtain axial and radial distributions for different rings. These distributions are used to obtain the total 233U breeding in the whole assembly. The integral measured values are found to be in good agreement with the calculated values obtained employing the MCNP Monte Carlo code using the BMCCS2 cross-section library.