ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Kyung-Ho Kang, Joachim A. Maruhn
Fusion Science and Technology | Volume 31 | Number 3 | May 1997 | Pages 265-279
Technical Paper | ICF Target | doi.org/10.13182/FST97-A30830
Articles are hosted by Taylor and Francis Online.
A simple dynamic model is developed for the investigation of the hohlraum symmetrization by estimating the time changes of the optical geometry of the components under the influence of hohlraum radiation. The expansion of the converters heated by ion beams is also included. By performing dynamic simulations of the hohlraum target, it is found that the change in hohlraum geometry due to hydrodynamic expansion has a crucial effect on symmetrization. It is also found that the symmetry is now strongly dependent on time, and the optimal condition can only be satisfied for a limited time interval. An improved version of the hohlraum target is discussed, which may considerably increase the optimal time interval. This concept includes the suppression of the dynamic expansion by using low-Z gas in the hohlraum, the reduction of the optical expansion of the converter by using low-Z material, and modification of the shield configuration.