ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Tadayoshi Ohmori, Michio Enyo, Tadahiko Mizuno, Yoshinobu Nodasaka, Hideki Minagawa
Fusion Science and Technology | Volume 31 | Number 2 | March 1997 | Pages 210-218
Technical Paper | Nuclear Reaction in Solid | doi.org/10.13182/FST97-A30823
Articles are hosted by Taylor and Francis Online.
The identification of some reaction products possibly produced during the generation of excess energy is attempted. Electrolysis is performed for 7 days with a constant current intensity of 1 A. The electrolytes used are Na2SO4, K2SO4, K2CO3, and KOH. After the electrolysis, the elements in the electrode near the surface are analyzed by Auger electron spectroscopy and electron probe microanalysis. In every case, a notable amount of iron atoms in the range of 1.0 × 1016 to 1.8 × 1017 atom/cm2 (true area) are detected together with the generation of a certain amount of excess energy evolution. The isotopic abundance of iron atoms, which are 6.5, 77.5, and 14.5% for 54Fe, 56Fe, and 57Fe, respectively, and are obviously different from the natural isotopic abundance, are measured at the top surface of a gold electrode by secondary ion mass spectrometry. The content of 57Fe tends to increase up to 25% in the more inner layers of the electrode.