ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Masabumi Nishikawa, Kohsaku Takahashi, Kenzo Munakata, Satoshi Fukada, Kenji Kotoh, Toshiharu Takeishi
Fusion Science and Technology | Volume 31 | Number 2 | March 1997 | Pages 175-184
Technical Paper | Tritium System | doi.org/10.13182/FST97-A30820
Articles are hosted by Taylor and Francis Online.
At present, the standard arrangement of the air cleanup system responsible for emergency tritium recovery from room air is a catalytic oxidation bed with a heater followed by an adsorption bed with a cooler. One disadvantage of this arrangement is that trouble with the heater or the cooler could result in a loss of capacity to recover tritium. Another disadvantage of the catalyst-adsorption-bed arrangement is that tritiated water must be recovered with a high decontamination factor after dilution with a large amount of water vapor in the working atmosphere. The performance of a new arrangement for the air cleanup system, which consists of a precious metal catalyst bed preceded by an adsorption bed without heating equipment, is discussed. According to calculations, most of the tritium released to the room air is recovered in the catalyst bed through oxidation, adsorption, and isotope exchange reaction when the new arrangement is applied. The adsorption bed placed before the catalyst bed dehumidifies the process gas to such a degree that the oxidation reaction of tritium in the catalyst bed is not hindered by water vapor.