ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
The spotlight shines on a nuclear influencer
Brazilian model, nuclear advocate, and philanthropist Isabelle Boemeke, who the online TED lecture series describes as “the world’s first nuclear energy influencer,” was the subject of a recent New York Times article that explored her ardent support for and advocacy of nuclear technology.
Olaf Neubauer, Friedrich Hugo Bohn, Alexander Chudnovskij, Bert Giesen, Paul Hüttemann, Martin Lochter
Fusion Science and Technology | Volume 31 | Number 2 | March 1997 | Pages 154-158
Technical Paper | Magnet System | doi.org/10.13182/FST97-A30817
Articles are hosted by Taylor and Francis Online.
The results of the poloidal field (PF) coil efficiency measurements and the values for stray field compensation during premagnetization are presented. The results have been verified by field calculations and compared with plasma breakdown experiments. Determination of the vertical field in the plasma center produced by PF coils is essential for the definition of breakdown conditions and for the control of the horizontal plasma position and of the plasma shape in tokamaks. The electron beam technique has been chosen for the measurements, providing sufficient precision and visibility. Magnetic field lines became visible due to the effect of electron movement in a magnetic field and light emission in a gas. Vertical fields were determined from the measured toroidal field and vertical electron beam displacements. Precise determination of the values for the stray field compensation was achieved by detection of very low stray fields from the deflection of the electron beam.