ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
D. B. Hayden, D. N. Ruzic
Fusion Science and Technology | Volume 31 | Number 2 | March 1997 | Pages 128-134
Technical Paper | Divertor System | doi.org/10.13182/FST97-A30815
Articles are hosted by Taylor and Francis Online.
The Monte Carlo code DEGAS was used to investigate the neutral atom and molecular interactions for a high-pressure (∼1-Torr) gaseous divertor in the International Thermonuclear Experimental Reactor (ITER). Energy is removed from the plasma by radiation while the plasma pressure is balanced predominantly by a high neutral pressure at the end of the divertor. Plasma parameters were taken from the two-dimensional fluid code PLANET. Neutral sources from both ions recycling off the walls and recombination were included. The neutral density peak calculated with DEGAS of 3.43 ± 0.01 × 1022 m−3 occurred 4.5 cm from the divertor channel end. The ion and neutral atom energy fluxes were calculated to determine the heat load onto the divertor walls. A code was written to calculate the radiation distribution onto the side walls, not including any radiative absorption or reemission. The total energy flux peak (including ions, neutrals, and radiation) was 4.28 ± 0.30 MW/m2. This falls below the design criteria of 5 MW/m2. These results may help determine the wall material, heat removal, and the vacuum pumping requirements for the ITER divertor design and show the importance of a full treatment of neutral atoms and molecules in these regimes.