ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
David Bernat, Richard B. Stephens
Fusion Science and Technology | Volume 31 | Number 4 | July 1997 | Pages 473-476
Technical Paper | Eleventh Target Fabrication Specialists' Meeting | doi.org/10.13182/FST97-A30804
Articles are hosted by Taylor and Francis Online.
A long-standing problem in the characterization of multi-layered ICF capsules is the determination of the position of surfaces and interfaces from x-radiographic images. The accepted procedure for analyzing such images is to calculate the radial second derivative of x-ray absorption through a shell to locate the points of inflection in the absorption vs. radius plot which denote the layer interfaces. The computer routine developed in 1994 as an addition to NIH Image to perform this analysis was subject to unnecessary noise caused by calculating the radial finite second derivative (Δ2z/Δr2) from the interpolated radial points. Our most recent algorithm update solves this problem by directly determining the radial infinitesimal second derivative (d2z/dr2) of a cubic interpolation of surrounding pixels. This new procedure allows us to make reliable measurements of wall thickness vs. angle and layer uniformity, an improvement over the original method which only yielded layer thickness values averaged over all 360° of the shell.