ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Francesco Ghezzi, Walter T. Shmayda, Giovanni Bonizzoni
Fusion Science and Technology | Volume 31 | Number 1 | January 1997 | Pages 75-105
Technical Paper | Tritium System | doi.org/10.13182/FST97-A30781
Articles are hosted by Taylor and Francis Online.
Tritium gas handling involves the production of tritiated water, which is 10000 times more hazardous than tritium gas. If tritium emission to the environment must be minimized, the need to process tritiated water and recover the chemically bound tritium appears clear. Facilities for processing tritiated water produced in fission reactors are already available, while facilities for a deuterium-tritium fusion machine are under development. However, these facilities are intended for large-scale applications and are neither practical nor economical for small-scale applications. HTO vapor reduction to HT over a hot metal getter other than uranium offers a simple, safe, and economical solution. A high alloy capacity and conversion rate combined with a low tritium residual inventory in the exhausted alloy make this method attractive. An experimental investigation of the efficiency of reducing HTO by a Zr-Fe-Mn alloy is presented. The results, obtained by three independent diagnostics (stripper set, ionization chambers, and mass spectrometry), show that for gas residence times >1 s and alloy temperatures >400°C, a conversion efficiency exceeding 90% is achievable. Specific conversion rates >0.1 μmol/s·g−1 are observed during the alloy usage, while a capacity of the alloy, measured as an oxygen-to-alloy mole ratio, >2.6 has been measured.