ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Edward A. Hoffman, Weston M. Stacey, Nolan E. Hertel
Fusion Science and Technology | Volume 31 | Number 1 | January 1997 | Pages 35-62
Technical Paper | Materials Engineering | doi.org/10.13182/FST97-A30779
Articles are hosted by Taylor and Francis Online.
Results from the present physics, materials, and blanket research and development programs are combined with physics and engineering design constraints to characterize candidate tokamak demonstration plant (DEMO) designs. Blanket designs based on the principal structural materials, breeding materials, and coolants being developed for the DEMO were adapted from the literature. Neutron flux and activation calculations were performed, and several radioactive waste disposal indexes were evaluated for each design. Of the primary low-activation structural materials under development in the United States, it appears that vanadium and ferritic steel alloys and possibly silicon carbide could lead to DEMO designs that could satisfy realistic low-level waste (LLW) criteria, provided that impurities can be controlled within plausible limits. Allowable LLW concentrations are established for the limiting alloying and impurity elements. All breeding materials and neutron multipliers considered meet the ELW criterion.