ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Disease-resistant cauliflower created through nuclear science
International Atomic Energy Agency researchers have helped scientists on the Indian Ocean island nation of Mauritius to develop a variety of cauliflower that is resistant to black rot disease. The cauliflower was developed through innovative radiation-induced plant-breeding techniques employed by the Joint Food and Agriculture Organization (FAO)/IAEA Centre of Nuclear Techniques in Food and Agriculture.
Takuro Honda, Takashi Okazaki, Yasushi Seki, Isao Aoki, Tomoaki Kunugi
Fusion Science and Technology | Volume 30 | Number 1 | September 1996 | Pages 95-103
Technical Paper | Safety and Environmental Aspect | doi.org/10.13182/FST96-A30766
Articles are hosted by Taylor and Francis Online.
Dust production due to plasma disruptions has been investigated using a safety analysis code, which can calculate the plasma dynamics and thermal characteristics of fusion reactor structures simultaneously. We selected two fusion reactor designs in the International Thermonuclear Experimental Reactor (ITER), i.e., the Engineering Design Activity (EDA) and the Conceptual Design Activity (CDA). The ITER/EDA will adopt beryllium for the plasma-facing component (PFC), and the ITER/CDA adopted graphite for PFC. The beryllium dust production in the ITER/EDA reactor will range from 7.0 to 10.3 kg/disruption, which strongly depends on vapor shield effects. The carbon dust production in the ITER/CDA reactor will range from 1.9 to 2.4 kg/disruption. However, the carbon dust will increase by as much as a factor of 2 to 5 because the effective latent heat of graphite has a large uncertainty under the extremely high heat flux during disruptions. For both, dust production from the first wall depends on the current quench time during disruptions. If the current quench time can be extended, the beryllium dust from the first wall will be minimized, and the carbon dust from there will be negligible.