ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Ronald W. Petzoldt, Ralph W. Moir
Fusion Science and Technology | Volume 30 | Number 1 | September 1996 | Pages 73-82
Technical Paper | ICF Target | doi.org/10.13182/FST96-A30764
Articles are hosted by Taylor and Francis Online.
The use of thin membranes to suspend an inertial fusion energy fuel capsule in a holder or hohlraum for injection into a reaction chamber is investigated. Also discussed is the stress that occurs in the fuel within a capsule during acceleration. To determine the maximum target acceleration, capsule displacement and membrane deformation angle are calculated for an axisymmetric geometry for a range of membrane strain and capsule size. Membranes must be thin (perhaps < 1 µm) to minimize their effect on capsule implosion symmetry. Typical target injection scenarios prefer accelerations in excess of 1000 m/s2. Acceleration in excess of 1600 m/s2 for a 2.4-mm-radius 30-mg capsule is possible with two 0.1-µm-thick membranes. Added stress from vibrations could cause a factor of 2 decrease in the allowed acceleration unless the acceleration profile is modified to mitigate this effect. However, if the acceleration is gradually increased and then decreased, over a few membrane oscillation periods (i.e., a few milliseconds), the membrane stress due to oscillation overshoot and the final capsule oscillation amplitude is minimal. Compared with a single membrane, a dual membrane geometry allows several times greater acceleration with reduced capsule displacement.