ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
Cris W. Barnes, Alvin R. Larson, A. L. Roquemore
Fusion Science and Technology | Volume 30 | Number 1 | September 1996 | Pages 63-72
Technical Paper | Blanket Engineering | doi.org/10.13182/FST96-A30763
Articles are hosted by Taylor and Francis Online.
The most accurate determination of neutron yields from fusion reactors maybe obtained from neutron activation measurements of elemental foils. On the Tokamak Fusion Test Reactor (TFTR), a re-entrant irradiation end has been installed to provide a low-scattering environment close to the plasma for neutron activation measurements. The ratio of energy-dependent fluence to total fusion yield is calculated using a fully three-dimensional Monte Carlo calculation with the Monte Carlo code for neutron and photon transport (MCNP). Corrections to the “virgin” fluence from attenuation and scattering are only 10 to 20% for deuterium-tritium (D-T) reactions and 30 to 40% for deuterium-deuterium reactions. A total 1-sigma accuracy of ±8% is achieved for D-T neutron yields over a wide dynamic range. This paper documents the response coefficients (hits per source neutron, where hits are activated nuclei per target nuclei) for use by the neutron activation system on TFTR; describes the possible systematic corrections needed (such as major radial variations or the impact of ion temperature on reactions with high-energy thresholds); and estimates uncertainties in the response coefficients. Results from in situ use of a D-T neutron generator are also analyzed using the MCNP modeling as an approximate benchmarking experiment; only 20% accuracy in the comparison is possible because of poor counting statistics in the calibration experiment.