ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Cris W. Barnes, Alvin R. Larson, A. L. Roquemore
Fusion Science and Technology | Volume 30 | Number 1 | September 1996 | Pages 63-72
Technical Paper | Blanket Engineering | doi.org/10.13182/FST96-A30763
Articles are hosted by Taylor and Francis Online.
The most accurate determination of neutron yields from fusion reactors maybe obtained from neutron activation measurements of elemental foils. On the Tokamak Fusion Test Reactor (TFTR), a re-entrant irradiation end has been installed to provide a low-scattering environment close to the plasma for neutron activation measurements. The ratio of energy-dependent fluence to total fusion yield is calculated using a fully three-dimensional Monte Carlo calculation with the Monte Carlo code for neutron and photon transport (MCNP). Corrections to the “virgin” fluence from attenuation and scattering are only 10 to 20% for deuterium-tritium (D-T) reactions and 30 to 40% for deuterium-deuterium reactions. A total 1-sigma accuracy of ±8% is achieved for D-T neutron yields over a wide dynamic range. This paper documents the response coefficients (hits per source neutron, where hits are activated nuclei per target nuclei) for use by the neutron activation system on TFTR; describes the possible systematic corrections needed (such as major radial variations or the impact of ion temperature on reactions with high-energy thresholds); and estimates uncertainties in the response coefficients. Results from in situ use of a D-T neutron generator are also analyzed using the MCNP modeling as an approximate benchmarking experiment; only 20% accuracy in the comparison is possible because of poor counting statistics in the calibration experiment.