ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Kei-Ichiro Shibata, Koichi Maki, Michio Otsuka, Takashi Inoue
Fusion Science and Technology | Volume 30 | Number 1 | September 1996 | Pages 50-62
Technical Paper | Shielding | doi.org/10.13182/FST96-A30762
Articles are hosted by Taylor and Francis Online.
As applied to the common design of the neutral beam injection (NBI) system in the International Thermonuclear Experimental Reactor (ITER) Conceptual Design Activity, a design is proposed and examined that reduces the equivalent dose rate of the NBI system in order to enable access to the outside of the injector. Modifying the current system is necessary because the equivalent dose rate in the NBI room after reactor shutdown is higher than the design limit for radiation workers. The NBI maintenance concept is based on full-remote maintenance. There are, however, some problems that must be solved before full-remote maintenance could be realized—such as connection and disconnection of the electric power cables and complicated coolant pipes, and location of the maintenance equipment—this concept solves the aforementioned problem by enabling worker accessibility to the outside of the injector. The following design points are suggested to reduce the equivalent dose rate. The vacuum vessel should be composed of aluminum to reduce the induced radioactivity. Polyethylene, which has high shielding ability for neutrons, should be installed between the vessel and magnetic shield located outside the vacuum vessel to reduce not only neutron flux coming to the magnetic shield but also gamma-ray flux, caused by in-vessel components, leaking to the NBI room. The equivalent dose rate in the NBI room 1 week after reactor shutdown can be reduced to 28 µSv/h by applying the foregoing measures. Thus, the prospect exists for realizing access to the outside of the injector.