ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Paul E. Moroz
Fusion Science and Technology | Volume 30 | Number 1 | September 1996 | Pages 40-49
Technical Paper | Experimental Device | doi.org/10.13182/FST96-A30761
Articles are hosted by Taylor and Francis Online.
A new type of device for plasma confinement that can be categorized as a stellarator-tokamak hybrid is proposed. This device features Wo systems of coils: the standard toroidal field coils of a tokamak and an additional system of simple coils to produce stellarator-like effects. A system of vertically inclined planar coils is used for numerical calculations, although other possible engineering solutions can be found. The system of poloidal field coils is required to compensate for the vertical magnetic field induced by the inclined coils. The possible modernization of a tokamak into such a hybrid is outlined. (The Phaedrus-T tokamak of the University of Wisconsin-Madison is kept in mind in the examples considered.) Because of the availability of two separate coil sets, the device considered is able to operate as a pure stellarator, as a pure tokamak, or as their hybrid when both coil systems are powered. The main unique features and regimes of operation would be expected to include smooth transition from the pure tokamak regime to the pure stellarator regime and back and to possibly operate the device in an alternating-current regime. Devices of this type combine the attractive properties of both tokamaks and stellarators. They feature inductive current, which is efficient for plasma heating and/or current drive, and good plasma confinement, typical of tokamaks. At the same time, they feature the prolonged or continuous plasma discharge operation typical of stellarators.