ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
C. E. Thomas, Jr., J. H. Harris, G. R. Haste, C. C. Klepper, J. T. Hogan, S. Tobin, F. W. Baity, R. C. Isler, T. Uckan, D. B. Batchelor, M. D. Carter, P. M. Ryan, D. J. Hoffman, the Oak Ridge National Laboratory/Fusion Energy Division Team, B. Saoutic, B. Beaumont, A. Becoulet, H. Kuus, D. Fraboulet, A. Grosman, D. Guilhem, W. Hess, J. Walter, T. Loarer, M. Chatelier, Equipe Tore Supra
Fusion Science and Technology | Volume 30 | Number 1 | September 1996 | Pages 1-39
Technical Paper | Plasma Heating System | doi.org/10.13182/FST96-A30760
Articles are hosted by Taylor and Francis Online.
Understanding ion cyclotron range of frequency (ICRF) antenna interaction with the edge/scrape-off-layer (SOL) plasma is crucial to building antennas that can survive long-pulse or steady-state high-power operation in plasmas. The global effects of ICRF/edge interactions are discussed. The present knowledge of ICRF-induced sheath interactions with the edge and SOL plasmas in magnetic fusion experiments is quantitatively reviewed and added to. The design principles and equations governing plasma heat loading and the sputtering of Faraday shields and the bumper limiters of ICRF antennas for long-pulse and steady-state devices are presented. Electrostatic sheaths on Faraday shields and bumper limiters are discussed, and an analytic estimate of the induced direct-current (dc) plasma potential at the lateral protection (bumper limiters) of ICRF antennas is given. This is a new result. This estimated dc voltage is used to give the total power flow to the lateral protection, and an expression for the power flux is given—also with new results. Equations to use in estimating impurity production (sputtering) and principles for minimizing impurity production are reviewed. Similar equations and estimates for electromotive radio-frequency sheaths are given, and new scaling laws for the dc voltage and power flow to the ICRF antenna lateral protection due to electromotive sheaths are proposed. The initial results from the ICRF/edge interaction experiments on Tore Supra are presented and discussed in light of the theoretical and heuristic results given.