ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Ryuji Yoshino, James K. Koga, Tatsuoki Takeda
Fusion Science and Technology | Volume 30 | Number 2 | November 1996 | Pages 237-250
Technical Paper | Special Section: Plasma Control Issues for Tokamaks / Plasma Engineering | doi.org/10.13182/FST96-A30753
Articles are hosted by Taylor and Francis Online.
A high toroidal eddy current induced in a vacuum vessel during plasma-current quench, Ip quench, results in errors in determining the vertical position of the plasma-current center, ZJ, calculated from standard linear regression sensor algorithms. These deviations result in a vertical displacement event (VDE) that must be avoided because of the expected severe damage on the first wall in tokamak fusion reactors like the International Thermonuclear Experimental Reactor (ITER). On the other hand, high ZJ calculation accuracy must be maintained at steady state to obtain reasonable plasma performance. Thus, real-time sensor algorithms for the calculation of ZJ applicable to the two cases of steady state and slow Ip quench are investigated. When a statistical method is applied to the ZJ calculation, its deviation from the actual ZJ cannot be completely reduced at the same time for both cases. On the contrary, a neural network demonstrates high accuracy in the calculation of ZJ for both cases, which enables real-time feedback control of ZJ during slow Ip quench, avoids VDE, and keeps reasonable plasma performance during steady state.