ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Raffaele Albanese, Enzo Coccorese, Otto Gruber, Raffaele Martone, Patrick McCarthy, Francesco Carlo Morabito
Fusion Science and Technology | Volume 30 | Number 2 | November 1996 | Pages 219-236
Technical Paper | Special Section: Plasma Control Issues for Tokamaks / Plasma Engineering | doi.org/10.13182/FST96-A30752
Articles are hosted by Taylor and Francis Online.
Real-time control of the plasma shape in the International Thermonuclear Experimental Reactor (ITER) calls for a fast and accurate identification of the equilibrium starting from magnetic measurements. The technique proposed for ITER interpolates the actual equilibrium within a previously generated dataset where each parameter is given a sufficiently wide range of variation. The properties of the artificial neural networks (ANNs) are shown to be well suited for this task. The satisfactory comparison with the functional parameterization, which is currently adopted for the feedback control in ASDEX-Upgrade, makes the proposed technique well linked to the experience available in current experiments. The ANN technique also provides an algorithm for the selection of the number and location of the magnetic sensors, which is an important issue for the ITER design. A preliminary analysis of the effects of the eddy currents flowing in the structure is also included. Numerical results presented refer to the so-called TAC-4 ITER geometry; extrapolation to update geometries with a close poloidal field concept is straightforward.