ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Gerasimos Tinios, Steve F. Horne, Ian H. Hutchinson, Stephen M. Wolfe
Fusion Science and Technology | Volume 30 | Number 2 | November 1996 | Pages 201-218
Technical Paper | Special Section: Plasma Control Issues for Tokamaks / Experimental Device | doi.org/10.13182/FST96-A30751
Articles are hosted by Taylor and Francis Online.
Linear control models are tested against experimental data from the Alcator C-Mod tokamak. A nonrigid, approximately flux-conserving, perturbed equilibrium plasma response model is used, together with a detailed toroidally symmetric model of the conducting vacuum vessel and the supporting superstructure, and experimentally determined power supply responses. Experiments are conducted with vertically unstable plasmas where the feedback is turned off and the plasma response is observed in an open-loop configuration. The agreement between theory and experiment is found to be very satisfactory, proving that the perturbed equilibrium plasma response model and a toroidally symmetric electromagnetic model of the vacuum vessel and the structure can be trusted for the purposes of calculations for control law design. The closed-loop behavior is also examined by injecting step perturbations into the desired vertical position of the plasma. The control hardware introduces nonlinearities that make it difficult to explain observed behavior with linear theory. Nonlinear simulation of the time evolution of the closed-loop experiments is able to account for the discrepancies between linear theory and experiment. Satisfactory agreement is then obtained between the model including the full multiple input/multiple output control system and the experimental observations.