ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Charles E. Kessel, Stephen C. Jardin, Richard H. Bulmer, Robert D. Pillsbury,† Pei-Wen Wang,† George H. Neilson,‡, Dennis J. Strickler‡
Fusion Science and Technology | Volume 30 | Number 2 | November 1996 | Pages 184-200
Technical Paper | Special Section: Plasma Control Issues for Tokamaks / Plasma Engineering | doi.org/10.13182/FST96-A30750
Articles are hosted by Taylor and Francis Online.
Control of the poloidal field (PF) in the Tokamak Physics Experiment (TPX) is critical to achieving its mission of advanced tokamak research. Extensive examination of the plasma equilibrium; plasma start-up; plasma position, shape, and current control; and plasma shape reconstruction have been performed as part of the design process. This paper reports the progress in this area. The PF coils have been designed to produce a wide range of plasmas. Plasma start-up can be achieved for multiple conditions. Fast plasma position control coils inside the vacuum vessel are used for short timescale control of the plasma vertical and radial position. Shape and total plasma-current control are provided by the PF coils over a slower timescale. A new algorithm for shape control of a few critical plasma boundary points is described and used in simulations using the Tokamak Simulation Code. Fast magnetostatic reconstruction of the plasma shape is examined to determine the impact of measurement locations and their quality.