ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Ronald E. Bell, Ronald E. Hatcher, Lawrence J. Lagin, Michio Okabayashi, Paul Sichta
Fusion Science and Technology | Volume 30 | Number 2 | November 1996 | Pages 151-158
Technical Paper | Special Section: Plasma Control Issues for Tokamaks / Experimental Device | doi.org/10.13182/FST96-A30747
Articles are hosted by Taylor and Francis Online.
A digital plasma control system for the Princeton Beta Experiment Modification (PBX-M) is being prepared. The functions of the existing analog shape and position control subsystems will be assumed by the upgraded control system. Plasma profile control will be pursued by making use of the lower hybrid current drive and the ion Bernstein wave heating systems to modify the plasma current and pressure profiles. A framework for integrating these plasma control functions is presented. Existing profile diagnostics can, with some modification, provide the information necessary to feed back on the plasma profiles. The digital control hardware is commercially available. Four real-time processors, which can be programmed independently, reside on a single Versa Module Eurocard board with dedicated shared memory. The parallel programming capability allows the separation by function of the vertical position control, shaping control, and profile control, which have different characteristic time-scales.