ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
R. Paul Drake, James H. Hammer, Charles W. Hartman, L. John Perkins, Dmitri D. Ryutov
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 310-325
Technical Paper | Plasma Engineering | doi.org/10.13182/FST96-A30734
Articles are hosted by Taylor and Francis Online.
Adiabatic compression of a preformed closed field line configuration by an imploding liner is considered. Three configurations are discussed: the field-reversed configuration, the spheromak, and the Z-pinch. It is shown that by employing a two-dimensional compression, one can reach a breakeven condition with an energy input into the plasma as low as 100 kJ. Typical initial dimensions of the liner are length, 5 to 6 cm; radius, ∼1 cm; and wall thickness, ∼0.01 cm. Liner mass is in the range of a few grams. It is assumed that the initial plasma beta is of the order of unity; in this case, the final beta is much greater than 1, and the plasma is in a wall confinement regime. Typical plasma parameters for the final state (for the linear compression ratio equal to 10) are density, 1021 cm−3; temperature, 10 keV; and magnetic field, 107 G. A brief discussion of various phenomena affecting the wall confinement is presented (magnetic field diffusion, radiative losses, and impurity penetration); the conclusion is drawn that the heat losses to the walls are modest and are not a factor that limits plasma enhancement Q. It is shown that at least for relatively thin liners, whose compressibility can be neglected, what limits Q is a relatively short liner dwell time near the maximum compression point. The scaling law for the Q versus the input parameters of the system is derived, which shows a relatively weak dependence of Q on the input energy. Possible ways for increasing the dwell time are discussed. Reactor potentialities of the system are briefly described. It is emphasized that the possibility of performing crucial experiments on small- to medium-scale experimental devices may considerably shorten the development path for the system under consideration. Some nonfusion applications of the system described are mentioned. Among them are burning and transmutation of long-lived fusion products, medical isotope production, a pulsed source of hard X rays, and fusion neutrons.