ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Akira Kitamura, Takakazu Saitoh, Hiroshi Itoh
Fusion Science and Technology | Volume 29 | Number 3 | May 1996 | Pages 372-378
Technical Paper | Nuclear Reactions in Solid | doi.org/10.13182/FST96-A30723
Articles are hosted by Taylor and Francis Online.
Elastic recoil detection (ERD) analysis is successfully applied to in situ measurements of hydrogen isotope distributions formed in palladium and titanium during deuterium ion implantation to observe phenomena connected with so-called cold fusion. In situ analysis is shown to be effective in identifying the physical processes occurring in such hydrogen-metal systems. The system is equipped with charged-particle detectors not only for the detection of nuclear reaction products occurring under bombardment with kilo-electron-volt deuterium ions but also for ERD analyses using a mega-electron-volt accelerator. The beam-target D(d,p)t reaction yield during implantation is dependent on the beam current or the deuterium flux. This is interpreted in terms of a temperature dependence of the deuterium concentration that is measured in situ by the ERD method. During the bombardment with heavy ions for ERD, measurements of reaction products are also made simultaneously with those of the recoil particles to clarify the structure of the spectra, although some unidentified peaks remain.