ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
Diethelm Schroeder-Richter, Sabiha Yildiz
Fusion Science and Technology | Volume 29 | Number 4 | July 1996 | Pages 512-518
Technical Paper | Blanket Engineering | doi.org/10.13182/FST96-A30694
Articles are hosted by Taylor and Francis Online.
The critical heat flux (CHF) is studied experimentally in vertical tubes heated directly using power current (direct current 2500 A, 15 V) and cooled with water at a low mass flow rate (0 to 0 2 Mg/m2·s) and at low pressure (0.1 to 0.8 MPa). A smooth tube and a tube with a porous coating layer sintered onto the inner surface were used. The tube and the porous coating layer are both made from INCONEL-600. The results (so far at moderate heat fluxes) are compared with each other and with correlations by Katto and by Weber. Enhancement of heat transfer was determined as well as a negative effect of the porous coating below the expected value of CHF. It seems that a disadvantage of the coated tube corresponds to the apparently annular flow regime alone; whereas, the CHFs can be enhanced by the porous layer as long as the bubbly flow pattern is maintained up to the location of maximum heat flux. Obviously, the latter situation is established during high-heat-flux conditions, i.e., at high subcooling and high flow rate, which are the classical design characteristics of high-heat-flux components infusion reactors.