ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Diethelm Schroeder-Richter, Sabiha Yildiz
Fusion Science and Technology | Volume 29 | Number 4 | July 1996 | Pages 512-518
Technical Paper | Blanket Engineering | doi.org/10.13182/FST96-A30694
Articles are hosted by Taylor and Francis Online.
The critical heat flux (CHF) is studied experimentally in vertical tubes heated directly using power current (direct current 2500 A, 15 V) and cooled with water at a low mass flow rate (0 to 0 2 Mg/m2·s) and at low pressure (0.1 to 0.8 MPa). A smooth tube and a tube with a porous coating layer sintered onto the inner surface were used. The tube and the porous coating layer are both made from INCONEL-600. The results (so far at moderate heat fluxes) are compared with each other and with correlations by Katto and by Weber. Enhancement of heat transfer was determined as well as a negative effect of the porous coating below the expected value of CHF. It seems that a disadvantage of the coated tube corresponds to the apparently annular flow regime alone; whereas, the CHFs can be enhanced by the porous layer as long as the bubbly flow pattern is maintained up to the location of maximum heat flux. Obviously, the latter situation is established during high-heat-flux conditions, i.e., at high subcooling and high flow rate, which are the classical design characteristics of high-heat-flux components infusion reactors.