ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
Gian Piero Celata, Maurizio Cumo, Andrea Mariani, Giuseppe Zummo
Fusion Science and Technology | Volume 29 | Number 4 | July 1996 | Pages 499-511
Technical Paper | Blanket Engineering | doi.org/10.13182/FST96-A30693
Articles are hosted by Taylor and Francis Online.
A new model is presented for the prediction of the critical heat flux (CHF) of subcooled flow boiling based on a liquid-sublayer dryout mechanism, i.e., the dryout of a thin, liquid layer beneath an intermittent vapor blanket due to the coalescence of small bubbles. The model focuses on the analysis of the CHF in subcooled flow boiling under conditions of very high mass flux and liquid subcooling, typical of fusion reactor thermal-hydraulic design, and is characterized by the absence of empirical constants always present in earlier models. Peripheral nonuniform heating and/or twisted-tape inserts are accounted for in the model, which was originally developed for uniform heating and straight flow. The simultaneous occurrence of the two events is also well predicted by the model. Although initially formulated for operating conditions typical of the thermal-hydraulic design of fusion reactor high-heat-flux components, the model is proven to be able to satisfactorily predict the CHF under more general conditions, provided local thermodynamic conditions of the bulk flow at the CHF are sufficiently far from the saturated state.