ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Fujio Inasaka, Hideki Nariai
Fusion Science and Technology | Volume 29 | Number 4 | July 1996 | Pages 487-498
Technical Paper | Blanket Engineering | doi.org/10.13182/FST96-A30692
Articles are hosted by Taylor and Francis Online.
It is necessary to accurately determine the critical heat flux (CHF) of cooling systems used infusion reactors. Currently, sufficiently accurate CHF correlations for one-sided heating have not been established. A design method for subcooled boiling cooling systems using swirl tubes is described. From a review of existing work under uniform heating conditions, the correlations of Gunther and Nariai-Inasaka are recommended for smooth and swirl flow, respectively. The effects of thermal conductivity and geometry of the cooling sections on both the nonuniformity factor and the peaking factor were investigated by solving a heat conduction equation. For swirl flow under one-sided heating, the CHF multiplier increases with the increasing nonuniformity factor. Design criteria for subcooled boiling swirl-tube cooling systems are presented.