ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Ronald D. Boyd, Xiaowei Meng
Fusion Science and Technology | Volume 29 | Number 4 | July 1996 | Pages 459-467
Technical Paper | Blanket Engineeringy | doi.org/10.13182/FST96-A30690
Articles are hosted by Taylor and Francis Online.
Several existing heat transfer models for uniformly heated channels were examined to accurately represent the boiling curve and to characterize the local heat transfer coefficient under high-heat-flux (HHF) conditions. Comparisons with HHF data showed that major correlation modifications were needed in the subcooled partial nucleate boiling (SPNB) region. Because the slope of the boiling curve in this region is important to ensure continuity of the HHF trends into the fully developed boiling region and up to the critical heat flux, accurate characterization in the SPNB region is essential Approximations for the asymptotic limits for the SPNB region have been obtained and have been used to develop an improved composite correlation. The developed correlation has been compared with 363 water data points. For the local heat transfer coefficient and wall temperature, the overall percent standard deviations with respect to the data were 19 and 3%, respectively, for the high-velocity water data.