ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Ronald D. Boyd, Xiaowei Meng
Fusion Science and Technology | Volume 29 | Number 4 | July 1996 | Pages 459-467
Technical Paper | Blanket Engineeringy | doi.org/10.13182/FST96-A30690
Articles are hosted by Taylor and Francis Online.
Several existing heat transfer models for uniformly heated channels were examined to accurately represent the boiling curve and to characterize the local heat transfer coefficient under high-heat-flux (HHF) conditions. Comparisons with HHF data showed that major correlation modifications were needed in the subcooled partial nucleate boiling (SPNB) region. Because the slope of the boiling curve in this region is important to ensure continuity of the HHF trends into the fully developed boiling region and up to the critical heat flux, accurate characterization in the SPNB region is essential Approximations for the asymptotic limits for the SPNB region have been obtained and have been used to develop an improved composite correlation. The developed correlation has been compared with 363 water data points. For the local heat transfer coefficient and wall temperature, the overall percent standard deviations with respect to the data were 19 and 3%, respectively, for the high-velocity water data.