ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Applications open for the fall cohort of Mentor Match
Applications are officially open for the second cohort of the American Nuclear Society’s newly redesigned mentoring program. Mentor Match is a unique opportunity available only to ANS members that offers year-round mentorship and networking opportunities to Society members at any point in their education.
The deadline to apply for membership in the fall cohort, which will take place October 1–November 30, is September 17. The application form can be found here.
N. A. Tahir, D. H. H. Hoffmann
Fusion Science and Technology | Volume 29 | Number 1 | January 1996 | Pages 171-177
Technical Paper | ICF Target | doi.org/10.13182/FST96-A30664
Articles are hosted by Taylor and Francis Online.
One-dimensional numerical simulations are presented of the compression and thermonuclear burn of a radiation-driven, reactor-size inertial fusion target that uses a substantially reduced tritium level. A parameter study of thermonuclear energy output is carried out in which the tritium content of the target is systematically reduced. The energy output is found not to be sensitive to a reduction in the tritium content of the target by up to 50%, which means that the tritium inventory in the reactor system could be substantially reduced. Moreover, the tritium fractional burn in low tritium targets is found to be much higher compared with equimolar deuterium-tritium targets. Therefore, the process of evacuation of the target debris from the reactor chamber after each shot will be much cleaner in the former case compared with the latter. These results can have very important implications for the safety and environmental acceptability of future inertial fusion reactor systems.