ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
N. A. Tahir, D. H. H. Hoffmann
Fusion Science and Technology | Volume 29 | Number 1 | January 1996 | Pages 171-177
Technical Paper | ICF Target | doi.org/10.13182/FST96-A30664
Articles are hosted by Taylor and Francis Online.
One-dimensional numerical simulations are presented of the compression and thermonuclear burn of a radiation-driven, reactor-size inertial fusion target that uses a substantially reduced tritium level. A parameter study of thermonuclear energy output is carried out in which the tritium content of the target is systematically reduced. The energy output is found not to be sensitive to a reduction in the tritium content of the target by up to 50%, which means that the tritium inventory in the reactor system could be substantially reduced. Moreover, the tritium fractional burn in low tritium targets is found to be much higher compared with equimolar deuterium-tritium targets. Therefore, the process of evacuation of the target debris from the reactor chamber after each shot will be much cleaner in the former case compared with the latter. These results can have very important implications for the safety and environmental acceptability of future inertial fusion reactor systems.