ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
N. Venkataramani, F. Ghezzi, G. Bonizzoni, W. T. Shmayda
Fusion Science and Technology | Volume 29 | Number 1 | January 1996 | Pages 91-104
Technical Paper | Tritium System | doi.org/10.13182/FST96-A30659
Articles are hosted by Taylor and Francis Online.
A follow-up is done to earlier work on the conversion of isotopic waters to hydrogen isotopes, and it involves the reaction behavior of water vapor with Zr(V0.5Fe0.5)2 getter alloy under water vapor flow conditions. The efficiency of the alloy, for the conversion of H2O and D2O to H2 and D2, respectively, has been measured at different reactor pressures in the range of 10 to 330 Pa for different alloy temperatures in the range of 150 to 400°C and with hydrogen and oxygen concentrations in the alloy ≤ 250 mmol/mol of alloy. The conversion efficiency was measured to be in the range of 25 to 35% at reactor pressures of ≈250 Pa for water vapor flow rates of ≈0.3 µmol/g of alloy per second, while it was found to be in the range of 70 to 80% at reactor pressures ≤20 Pa with flow rates of ≤0.02 µmol/g of alloy per second. These experiments demonstrate the feasibility of tritiated water vapor conversion to tritium using metallic getter alloys under quasi-steady-state conditions; this feasibility is very relevant to the fusion reactor fuel cycle.