ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Applications open for the fall cohort of Mentor Match
Applications are officially open for the second cohort of the American Nuclear Society’s newly redesigned mentoring program. Mentor Match is a unique opportunity available only to ANS members that offers year-round mentorship and networking opportunities to Society members at any point in their education.
The deadline to apply for membership in the fall cohort, which will take place October 1–November 30, is September 17. The application form can be found here.
A. Donato, R. Andreani
Fusion Science and Technology | Volume 29 | Number 1 | January 1996 | Pages 58-72
Technical Paper | Materials Engineering | doi.org/10.13182/FST96-A30656
Articles are hosted by Taylor and Francis Online.
The design and construction of a fusion reactor represent a very difficult challenge from the viewpoint of developing materials that will allow fusion to be realized as an economic, safe, and environmentally acceptable energy source. In fact, the operating conditions of fusion reactor components will require the use of materials capable of safely sustaining thermal, mechanical, and irradiation loads never met in the past while at the same time producing negligible amounts of radioactivity and radioactive waste. An overview is presented of the development status and the perspectives of austenitic stainless steels, martensitic stainless steels, vanadium alloys, and fiber-reinforced ceramic composites (SiC/SiC), which are the materials currently being investigated for fusion reactor application. Limitations and possibilities of their use with reference to both the next experimental reactor, the International Thermonuclear Experimental Reactor (ITER), and the future Demonstration Reactor (DEMO) are examined. While for the experimental reactor ITER, research is directed toward the optimization of existing materials like austenitic steels, for future commercial reactors, ceramic matrix composites appear to offer enormous potential as a structural material because of their high-temperature properties, low density, low thermal expansion, and very low neutron activation.