ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
A. Donato, R. Andreani
Fusion Science and Technology | Volume 29 | Number 1 | January 1996 | Pages 58-72
Technical Paper | Materials Engineering | doi.org/10.13182/FST96-A30656
Articles are hosted by Taylor and Francis Online.
The design and construction of a fusion reactor represent a very difficult challenge from the viewpoint of developing materials that will allow fusion to be realized as an economic, safe, and environmentally acceptable energy source. In fact, the operating conditions of fusion reactor components will require the use of materials capable of safely sustaining thermal, mechanical, and irradiation loads never met in the past while at the same time producing negligible amounts of radioactivity and radioactive waste. An overview is presented of the development status and the perspectives of austenitic stainless steels, martensitic stainless steels, vanadium alloys, and fiber-reinforced ceramic composites (SiC/SiC), which are the materials currently being investigated for fusion reactor application. Limitations and possibilities of their use with reference to both the next experimental reactor, the International Thermonuclear Experimental Reactor (ITER), and the future Demonstration Reactor (DEMO) are examined. While for the experimental reactor ITER, research is directed toward the optimization of existing materials like austenitic steels, for future commercial reactors, ceramic matrix composites appear to offer enormous potential as a structural material because of their high-temperature properties, low density, low thermal expansion, and very low neutron activation.